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1. Introduction 

Water is one of the most vital natural resources, playing a central role in sustaining ecosystems, human 

health, agriculture, and industry. However, rapid industrialization, urbanization, and population growth 

have accelerated the degradation of water quality on a global scale (Sharma & Malaviya, 2021). The 

World Health Organization (WHO) estimates that over 2 billion people lack access to safe drinking 

water, and waterborne diseases remain among the leading causes of mortality, especially in developing 

nations (WHO, 2020). 

From a chemistry perspective, water pollution is not only the introduction of undesirable substances 

into aquatic systems but also the transformation of those substances through chemical interactions such 

as hydrolysis, redox reactions, photolysis, and complexation (Petrović et al., 2019). This makes 

chemical characterization essential for understanding pollutant fate, toxicity, and remediation potential. 

Pollutants are typically categorized into inorganic (e.g., heavy metals, nitrates, fluorides) and organic 

(e.g., pesticides, dyes, pharmaceuticals, plastics) contaminants. Emerging pollutants such as 

pharmaceuticals, personal care products, and microplastics further complicate the chemical landscape of 

water pollution (Koelmans et al., 2019; Kumar et al., 2022). Unlike traditional pollutants, many of these 

are present at trace levels (ng/L–µg/L) yet exert significant ecological and toxicological impacts. 
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The chemistry of water pollution salso influences broader environmental processes such as 

eutrophication, acidification, and biomagnification, linking chemical dynamics in water to soil, air, 

and food chains (Carpenter et al., 2016). Furthermore, the development of advanced analytical tools 

(ICP-MS, GC-MS, electrochemical sensors) has provided new insights into pollutant speciation, 

transformation products, and risk assessment (Petrie et al., 2015). 

Given the complexity of pollutant chemistry and their persistence, remediation strategies must rely on 

chemical principles, including adsorption, advanced oxidation processes, photocatalysis, 

electrochemistry, and nanotechnology-based methods (Hoffmann et al., 1995; Crini & Lichtfouse, 

2019). This review therefore focuses on three central aspects: 

1. Sources and types of water pollutants from a chemistry perspective. 

2. Mechanisms of chemical transformation in aquatic environments. 

3. Analytical methods and chemical-based remediation strategies. 

Through this lens, the article aims to highlight how chemistry provides both the diagnostic tools and the 

remediation pathways for one of the most urgent environmental crises of the 21st century. 

2. Sources of Water Pollution: A Chemical Perspective 

2.1 Heavy Metals 

Industrial discharges contribute cadmium, lead, mercury, and arsenic to water bodies (Ali et al., 2019). 

These metals are non-biodegradable and undergo speciation depending on pH, redox potential, and 

ligand availability (Tchounwou et al., 2019). For example, hexavalent chromium (Cr(VI)) is a strong 

oxidant, while Cr(III) is relatively less toxic and precipitates easily (Kotas & Stasicka, 2000). 

2.2 Organic Pollutants 

Synthetic dyes, pesticides, and industrial solvents contaminate water through direct discharge or runoff 

(Carpenter et al., 2016). Many undergo slow hydrolysis, forming persistent intermediates (Fenner et al., 

2013). Persistent organic pollutants (POPs) resist degradation and bioaccumulate in aquatic food webs 

(Jones & de Voogt, 1999). 

2.3 Pharmaceuticals and Personal Care Products (PPCPs) 

Drugs like antibiotics, analgesics, and hormones enter aquatic systems via sewage and hospital effluents 

(Kümmerer, 2009). Many pharmaceuticals resist biodegradation, undergo photochemical 

transformations, and form active metabolites (Patel et al., 2020). 

2.4 Microplastics and Nanoplastics 

Microplastics leach plasticizers and flame retardants, altering water chemistry (Koelmans et al., 2019). 

Their hydrophobic surfaces adsorb hydrophobic organic pollutants (HOPs), acting as carriers of toxic 

chemicals (Wang et al., 2016). 
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3. Chemical Mechanisms of Water Pollution 

3.1 Hydrolysis and Photodegradation 

Organophosphorus pesticides undergo hydrolysis, forming toxic intermediates like dialkyl phosphates 

(Racke, 1992). Similarly, photolysis of dyes produces aromatic amines, which are mutagenic (Robinson 

et al., 2001). 

3.2 Redox Chemistry 

Heavy metals undergo redox cycling; for instance, Fe²⁺ oxidizes to Fe³⁺ under oxic conditions, 

influencing arsenic mobility (Smedley & Kinniburgh, 2002). Mercury undergoes methylation in aquatic 

sediments, increasing toxicity (Morel et al., 1998). 

3.3 Complexation and Adsorption 

Metal ions form complexes with natural organic matter (NOM), reducing their free ionic concentration 

but enhancing transport (Lu & Allen, 2002). Adsorption onto sediments and colloids alters pollutant 

distribution (Zhang et al., 2020). 

4. Analytical Chemistry of Water Pollutants 

Accurate monitoring requires sensitive analytical methods. Spectrophotometry, atomic absorption 

spectroscopy (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and chromatography 

(HPLC, GC-MS) are widely used (Petrie et al., 2015). Emerging techniques such as electrochemical 

sensors and surface-enhanced Raman spectroscopy (SERS) enable trace-level detection (Campion & 

Kambhampati, 1998). 
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5. Remediation Strategies: A Chemical Approach 

5.1 Adsorption 

Activated carbon, biochar, and nanomaterials (e.g., graphene oxide, zeolites) show strong adsorption for 

heavy metals and dyes (Gupta & Suhas, 2009). Functionalized surfaces enhance selectivity (Crini & 

Lichtfouse, 2019). 

5.2 Advanced Oxidation Processes (AOPs) 

Processes like Fenton oxidation, ozonation, and photocatalysis generate hydroxyl radicals (•OH), 

degrading persistent pollutants (Gogate & Pandit, 2004). TiO₂ photocatalysis has been extensively 

studied for dye degradation (Hoffmann et al., 1995). 

5.3 Electrochemical Methods 

Electrochemical oxidation using boron-doped diamond electrodes offers high efficiency in degrading 

pharmaceuticals and dyes (Martínez-Huitle & Brillas, 2009). 

5.4 Nanotechnology-Based Remediation 

Nano-iron, titanium dioxide nanoparticles, and carbon nanotubes are effective in pollutant removal via 

adsorption, reduction, or photocatalysis (Zhang, 2003). 

5.5 Biological and Hybrid Methods 

Bioremediation using microbes and phytoremediation by aquatic plants are eco-friendly but slow (Ali et 

al., 2013). Hybrid techniques combining chemical and biological processes enhance efficiency (Mohan 

et al., 2014). 
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6. Challenges and Future Perspectives 

Despite advances, limitations exist in scaling up chemical remediation due to cost, energy demand, and 

by-product toxicity (Vilardi et al., 2018). Future research should focus on: 

• Green nanomaterials for pollutant degradation 

• Solar-driven photocatalysis 

• Smart adsorbents with recyclability 

• Real-time pollutant monitoring via electrochemical sensors 

7. Conclusion 

Water pollution is an inherently chemical challenge, shaped by the interactions of pollutants with aquatic 

systems. From heavy metals and pesticides to pharmaceuticals and microplastics, the chemistry of 

pollutants governs their persistence, mobility, toxicity, and remediation potential. Understanding 

processes such as speciation, redox cycling, photodegradation, and complexation allows scientists to 

predict pollutant behavior and design more effective solutions.Advances in analytical chemistry have 

greatly improved our ability to detect pollutants at ultra-trace levels, but emerging contaminants and 

transformation products remain a significant knowledge gap (Petrie et al., 2015). At the same time, 

innovative remediation technologies—adsorption on nanomaterials, photocatalysis, electrochemical 

oxidation, and hybrid biological-chemical approaches—show immense promise for sustainable water 

treatment. However, challenges remain regarding scalability, energy costs, and the potential ecological 

risks of nanomaterials.The way forward lies in integrating green chemistry principles with environmental 

engineering and policy frameworks. Developing cost-effective, energy-efficient, and environmentally 

safe technologies is crucial for addressing water pollution at a global scale. In addition, continuous 

monitoring, stricter industrial discharge regulations, and public awareness campaigns are essential for 

long-term sustainability. 

Ultimately, chemistry provides the bridge between pollutant understanding and remediation action. By 

coupling fundamental chemical knowledge with advanced technologies, it is possible to move closer to 

the goal of clean, safe, and sustainable water resources for all. 
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